UCLA scientists unlock mystery of how ‘handedness’ arises

The overwhelming majority of proteins and other functional molecules in our bodies display a striking molecular characteristic: They can exist in two distinct forms that are mirror images of each other, like your right hand and left hand. Surprisingly, each of our bodies prefers only one of these molecular forms.

This mirror-image phenomenon — known as chirality or “handedness” — has captured the imagination of a UCLA research group led by Thomas G. Mason, a professor of chemistry and physics and a member of the California NanoSystems Institute at UCLA.

“Objects like our hands are chiral, while objects like regular triangles are achiral, meaning they don’t have a handedness to them,” said Mason, the senior author of the study.

Why many of the important functional molecules in our bodies almost always occur in just one chiral form when they could potentially exist in either is a mystery that has confounded researchers for years.

Learn more about chirality – UCLA Newsroom

Continue reading UCLA scientists unlock mystery of how ‘handedness’ arises

Advanced computers push science forward through millions of hours of processing power

Harnessing the power of supercomputers and their million hours of processing power has allowed some very intriguing physics calculations to take place. One of them is the study of matter in the universe on a subatomic level.

The question, how did we arrive at a universe composed almost exclusively of matter with virtually no antimatter?

The calculation took 54 million processor hours on the IBM BlueGene/P supercomputer at the Argonne National Laboratory in the U.S.

The new research, reported in the March 30 issue of Physical Review Letters, represents an important milestone in understanding kaon decays — which are a fundamental process in physics. It is also inspiring the development of a new generation of supercomputers that will allow the next step in this research.

“It has taken several decades of theoretical developments and the arrival of very powerful supercomputers to enable physicists to control the interactions of the quarks and gluons, the constituents of the elementary particles, with sufficient precision to explore the limits of the standard model and to test new theories,” says Chris Sachrajda, Professor of Physics at the University of Southampton, one of the members of the research team publishing the new findings.

The process by which a kaon decays into two lighter particles known as pions was explored in a 1964 Nobel Prize-winning experiment. This revealed the first experimental evidence of a phenomenon known as charge-parity (CP) violation — a lack of symmetry between particles and their corresponding antiparticles that may explain why the Universe is made of matter, and not antimatter.

via Science Daily – continue reading about the next generation of supercomputers, 10-20 times more powerful…

Argonne's Blue Gene/P Supercomputer

 

// Photo via Argonne National Lab – Article via Lauren Weinstein