America regains the title of ‘fastest supercomputer on the planet’

Every six months, Earth’s biggest supercomputers have a giant race to see which can lay claim to being the world’s fastest high-performance computing cluster.

In the latest Top 500 Supercomputer Sites list unveiled Monday morning, a newly assembled cluster built with IBM hardware at the Department of Energy’s Lawrence Livermore National Laboratory (LLNL) takes the top prize. Its speed? A whopping 16.32 petaflops, or 16 thousand trillion calculations per second. With 96 racks, 98,304 compute nodes, 1.6 million cores, and 1.6 petabytes of memory across 4,500 square feet, the IBM Blue Gene/Q system installed at LLNL overtakes the 10-petaflop, 705,000-core “K computer” in Japan’s RIKEN Advanced Institute for Computational Science.

The Japanese computer had been world’s fastest twice in a row. Before that, the top spot was held by a Chinese system. The DOE computer, named “Sequoia,” was delivered to LLNL between January and April. It’s the first US system to be ranked #1 since November 2009.

To get to 16 petaflops, Sequoia ran the Linpack benchmark for 23 hours without a single core failing, LLNL division leader Kim Cupps told Ars Friday in advance of the list’s release. The system is capable of hitting more than 20 petaflops—during the tests it ran at 81 percent efficiency.
Learn moreWith 16 petaflops and 1.6M cores, DOE supercomputer is world’s fastest

Continue reading America regains the title of ‘fastest supercomputer on the planet’

Yellowstone – new government petascale supercomputer – to attack chaos theory in climate change

This month, on a barren Wyoming landscape dotted with gopher holes and hay bales, the federal government is assembling a supercomputer 10 years in the making, one of the fastest computers ever built and the largest ever devoted to the study of atmospheric science.

The National Center for Atmospheric Research’s supercomputer has been dubbed Yellowstone, after the nearby national park, but it could have been named Nerdvana. The machine will have 100 racks of servers and 72,000 core processors, so many parts that they must be delivered in the back of a 747. Yellowstone will be capable of performing 1.5 quadrillion calculations — a quadrillion is a 1 followed by 15 zeros — every second.

The sheer speed of Yellowstone is designed to burst through the limits of chaos theory — the difference, allegorically, between predicting the odds of blackjack after playing five hands versus playing a million. The machine is expected to give scientists a clearer image of the state of the planet, and its future, revolutionizing the study of climate change, extreme weather events, wildfires, air pollution and more.

 

learn moreL.A. Times – New Wyoming supercomputer expected to boost atmospheric science

Continue reading Yellowstone – new government petascale supercomputer – to attack chaos theory in climate change

Advanced computers push science forward through millions of hours of processing power

Harnessing the power of supercomputers and their million hours of processing power has allowed some very intriguing physics calculations to take place. One of them is the study of matter in the universe on a subatomic level.

The question, how did we arrive at a universe composed almost exclusively of matter with virtually no antimatter?

The calculation took 54 million processor hours on the IBM BlueGene/P supercomputer at the Argonne National Laboratory in the U.S.

The new research, reported in the March 30 issue of Physical Review Letters, represents an important milestone in understanding kaon decays — which are a fundamental process in physics. It is also inspiring the development of a new generation of supercomputers that will allow the next step in this research.

“It has taken several decades of theoretical developments and the arrival of very powerful supercomputers to enable physicists to control the interactions of the quarks and gluons, the constituents of the elementary particles, with sufficient precision to explore the limits of the standard model and to test new theories,” says Chris Sachrajda, Professor of Physics at the University of Southampton, one of the members of the research team publishing the new findings.

The process by which a kaon decays into two lighter particles known as pions was explored in a 1964 Nobel Prize-winning experiment. This revealed the first experimental evidence of a phenomenon known as charge-parity (CP) violation — a lack of symmetry between particles and their corresponding antiparticles that may explain why the Universe is made of matter, and not antimatter.

via Science Daily – continue reading about the next generation of supercomputers, 10-20 times more powerful…

Argonne's Blue Gene/P Supercomputer

 

// Photo via Argonne National Lab – Article via Lauren Weinstein